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SUMMARY

The application of queueing theory to the performance analysis of
store-and-forward communications networks is described. Some
basic definitions and results in probability theory are reviewed,
and the important concept of the Markov process is introduced.
Applications of Markov and queueing theory to the study of networks
and network components in equilibrium are taken from a wide range
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I. !

1. INTRODUCTION

From its beginnings twenty years ago with the ARPANET experimental ".
network, the evolution of packet-switched communications networks has
been well documented [1,3]. Landmarks in this evolution are:

(i) By the end of the 1960's, plummeting computer hardware costs
implied that it was cheaper to allocate communications resources
dynamically (i.e. as a switched network) than to install extra resources
such as point-to-point links.

(ii) During the 1970's, the introduction of standard protocols and
the concept of a layered architecture made it possible (in principle)
for networks to be designed in a logical way and to be interconnected.

Although the individual protocols for data link control, flow
control and congestion control may be easily understood, we cannot as
yet predict the consequences of their interactions in a network subject
to errors and random loading over a period of time. The results of this
ignorance are deadlocks and unnecessary degradation in the network
performance.

In an attempt to understand network behaviour, much work has been
done in the mathematical analysis field by American groups: Professor
Leonard Kleinrock (University of California, Los Angeles) and Dr. Martin
-Reiser (IBM) are notable examples. Several reviews of analytical work
exist [4]-[81.

Because the traffic offered to a network (and perhaps also its
routing within the network) is random, we are forced to resort to a
description of the network characteristics (such as throughput, delay
and lost traffic) in terms of probability distributions. (In fact, the
idea of network resource sharing is based essentially on a result in
probability theory, namely the law of large numbers: although the
traffic from an individual user may be bursty in nature, the total
amount of traffic from many users is likely to be smooth as a function
of time, thus leering to an efficient use of resources.) Narkov theory

*" is a powerful method for describing the stochastic (random) nature of
communications networks, as it leads in many cases to tractable models;
nevertheless it can only be applied to fairly simple situations, so
other techniques such as the diffusion approximation are being employed
to treat more complicated models in an approximate manner. Finally,."
control theory has been used to investigate the control of networks,
although again there are considerable difficulties in obtaining a

. tractable but realistic model..

In Chapter 2, various definitions and results in probability theoryF "are reviewed. These are needed in order to understand Chapter 3, which
concerns itself with the theory of stochastic processes, including .V

Markov processes, queueing theory and renewal theory. Chapter 4Ii describes the applications of Markov processes and queueing theory to
the performance evaluation of protocols and network components, with
examples taken from current research literature. In Chapter 5 the

limitations of queueing theory are discussed with reference to blocking
" and priority in networks. Chapter 6 reviews the use of queueing theory

and related approximations in network analysis.

(The material in Chapters 2 and 3 is taken in part from Kleinrock's

*. 5 •
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2. REVIEW OF PROBABILITY AND TRANSFORM THEORY

2.1 The rules of probability

We consider a model which consists of three entities:

i) The SAMPLE SPACE S, which is the set of mutually exclusive
exhaustive outcomes of the model of an experiment. Each member of S is a
SAMPLE POINT.

(ii) A family of EVENTS E, where each event is a set of sample
.points. An event corresponds to a real result.

.- '

(iii) A PROBABILITY MEASURE P which maps the events A defined on S
into the set of real numbers. It satisfies OP[A1(1, P[S]-i. Moreover,
if A and B are mutually exclusive, then P[AUB]-P[A]*PrB].

The CONDITIONAL PROBABILITY of A occurring given that B occurred is
defined by P[A!B] a P[AB]/P[B] ( for P[B]iO ).

J A ani B are STATISTICALLY INDEPENDENT iff P[AB] - P[AIP[B].

whreLet iAjl be a set of mutually exclusive (i.e. A;Aj- % for all i,j,
where 0 is the null set) and exhaustive (i.e. A,U AaU...U A,- S) events.
Then this set satisfies:

i) Theorem of total probability:

.P[B] -. P[AjB] ( u P[BAJ]P[A,] from definition of conditional
-19 == probability)

(ii) Bayes' theorem:

" P[k'B] - P[BA;]P[Ai] /FP[BIAj]P[AJ]

Finally, the numbers of permutations and combinations respectively
of N objects taken K at a time are given by

0 0 -N'/IN--)( ; - N , :/((- K)

2.2 Random variabler

(a) A random variable is one whose value X(w) depends upon the

outcome w of a random experiment. Define the event [X-x] - 1w: X(w)-xl.
Then P[X-x] is the probability that X(w)ux, which is the sum of the
probabilities associated with each outcome w for which X(v)ux.

The PROBABILITY DISTRIBUTION FUNCTION (PDF) of X is

(x) - P[X~x], where [Xx] r Iw: X(w)4xl

The PROBABILITY DENSITY FUNCTION (pdf) of X is ,(x) - dFx)/dx. The
probability of an event occurring between x and x+dx is given by (x)dx.

7



Thus we have

-. P[a<Ub] - x)dx - F.(b) - F(a)

* The joint PDF and pdf for two random variables X and Y are

i .x~y)_- p~x~x,y~y] fro/xly) _- dlk,,(x,y)/dx/dy

* The marginal pdf for X is then defined by W =  x,y)dy.

(b) Random variables X,,,...,Xbare independent iff

: , (x/ .......

N- The conditional pdf is defined by

f xy) z d/dx P[x4xlY-y] f (xfy)/y)

The pdf of the sum of two independent random variables 1 and Xzcan
be shown to obey the following rule:

f (y) I f±(y-x.)fx,)dx, r-a 'yQ

where 0 is the CONVOLUTION OPERATOR.

In general, ly) - f),(y)@...* f (y) for Y - X, X, ... X

2.3 Expectation

(a) The expectation of a random variable X(v) is given by: II

4-4 E[X] -a T z (x)dx - F-F(x)]dx- fF(x)dx

where the final expression is obtained by integration by parts.

If Y is a function of X, i.e. Y - g(X), then

.. ErrY ] f y y)dy

. If Vx) is known, but not f y). then we may use the fundamental

theorem of expectation:

E'Y1 - E.[g(X)] - fg(x);Jx)dx

It is always true that T7Y -X +-Y. If X and Y are independent,
then I -TT

(b) The nth moment of X is T* a -- x)dx.

The nth central moment is (X--r- f L. x-T)'fx)dx.

An important central moment is the VARIANCE o'- a (I)' 7 - (It).
Cs is the STANDARD DEVIATION; the coefficient of variation is Cxz=r/.
If a X,+ X 1 ....* X. and the .,-are independent, then Cy -s

The COVARIANCE of two random variables X and Y is

8



J Cov(X,'Y) a (X- )(Y-) W -W

2.4 Limit theorems

Let IX be a set of iid (independently identically distributed)
variables, with i = 1,...,n. Define the "sample mean"

W,. Xi ~/n.
Then:

(ii) lii W.- X with probability one (strong law of large numbers)

(iii) lim P[Z.Lx] - #(x) (CENTRAL LIMIT THEOREM)

where Za (1/;/ii)(EX .- n) # 1(x) AL exp(-y/2)dy /JfW

.(x) is the NORMAL DISTRIBUTION.

2.5 The role of transforms

" 2.5.f Introduction

In the chapters on Markov processes it will be shown that the
probability distributions for our models are the solutions of linear
difference or differential equations with constant coefficients. The
standard method for solving such equations is to use z- or Laplace
transforms respectively.

2.5.2 The z-transform

(a) Let C;be a function of discrete time, where n=0,1,2,... The

p. i s-transform F(z) of fis defined by

F(s) z If. z, where z is complex.

This relationship is written as &40F(z). The transform exists if
there is an a>O such that lir I:f.1/a = 0.

The CONVOLUTION PROPERTY of the s-transform is tog.<W>G(z)F(z),

where -

Given a z-transform F(z), we may recover the sequence f.by two
methods:

f. (1/n!) dNF(z)/ds",

.z- (-2w) z(sls"ds

In the second method (the INVERSION FORMULA), the closed contour C

must surround all poles of F(s); the Cauchy Residue Theorem may then be



applied.

(b) To solve the general difference equation

am a ... a+g- am,4 n- k, k+1,....

where the aare known coefficients, eia a given function of n, and
N boundary equations are given, we proceed as follows. Multiply through
by z and sum from k to% i.e.

Then pick out expressions for C(s) in this equation and make use of
the boundary conditions to eliminate any unknowns. C(z) may then be
obtained and inverted.

(c) If X is a random variable and g&= P[X-k], then G(z) is known as

the probability generating function. Note that

G(z) - E[zw] ; )CG/3, 3., - T; jr C ',, - -"

2.5.3 The Laplace transform

(a) This is for functions of continuous time. It is defined by

F(s) a f(t)exp(-st)dt , where s is complex.

We write this as f(t)(=>A s). It possesses the convolution property
f(t)Qg(t) - as)G~s), where the convolution now involves integrals
rather than sums. Combining this with the result of Section 2.2, we have
an easy way of obtaining the Laplace transform of the pdf of the sum of
two independent variables.

A Laplace transform may be inverted by standard techniques such as
the inversion integral method.

(b) To solve the general constant-coefficient Nth order linear
differential equation

adDf(t)/dt + .... + a,df(t)/dt + aef(t) - e(t)

we transform both aides to obtain an algebraic equation for a),
which can then be inverted.

(c) The Laplace transform A(s) of the pdf of a random variable X
may be written as A s) - Efexp(-sX)J. The moments of X may be found by
solving

10



3. STOCHASTIC PROCESSES t-

3.1 Definition of a stochastic process

A stochastic process is a function X(t,w) X X(t) whose values are
random variables. It can be thought of as a family of random variables
"indexed" by the time t. Both X and t may be continuous or discrete. The
relationships of the X(t) to each other are described by the joint PDF;

Fx(x;t) - P[I(t,),...... X(t)tx] for all x, t, n.

X(t) is said to be STATIONARY if it is invariant to time shifts,
i.e.

F.(x;t+T) - Fx(x;t)

where t+r implies the vector (t,+ ,tL+T9 ......
The pdf for a stochastic process X(t) is fx(x;t) = )F(x;t)/2 .

Then:
X(t) - .

3.2 Basic queueing theory

The arrival of customers to a service facility is an example of a
stochastic process. The queueing process is characterised by

Interarrival time PDF a A(t) - P[time between arrivals < t]

Service time PDF M B(t) - P[service time , t]

A queueing process is conventionally written as A/B/m/K, where A
and B are the interarrival and service time PDFs respectively, m is the
number of servers, and K is the storage capacity.

Let A be the average arrival rate of customers to the system.

If T is the average time spent in the system by any customer, then
the average occupancy N of the system is given by LITTLE'S LAW:

N - XT

An intuitive "proof" of this law is that an arriving customer
should find the same number of customers on average in the system as he
leaves behind on his departure.

Let,* be the average service rate. We define the UTILISATION FACTOR
as p - (average arrival rate)x(average service time) - A/, . The

system is stable only if OQp<l; ifp)l, the number of customers in the
system will grow without bound. For a single-server queue, p is also the
TRAFFIC INTENSITY.

Consider a single-server system and let T be an arbitrarily long
time interval. Then the number of arrivals in this interval will be

approximately equal to AT, by the law of large numbers. If p is the

11 '



probability that the server is idle at some randomly selected time, then

*!'i ! number of customers served during V r t(1-W1 with probability I

.)4 Tt(-.IM k/p L e0-*1 _p, as 't-..

SP =1-] - fraction of time that server is busy

The above results are true for general interarrival and service
time PDFs; in this case the single-server queue is denoted as GIG/1.

-e In order to arrive at tractable models for communications networks,
restrictions must be imposed upon the form of the interarrival and
service time PDFs. A common system employed is the M/M/1 queueing
system, where M represents the Markovian (or exponential) distribution.
The M/M/1 queue is described later in this chapter.

3.3 Some stochastic processes

Stochastic processes become more interesting (and certainly easier
to analyse!) if some structure is imposed upon the joint PDF.

A MARKOV PROCESS is a random process in which the probability of
the next state being of a particular type depends only on the current
state and not upon the system's past history. If the Markov process has
a discrete state space, the process is called a MARKOV CHAIN. We shall

*be interested mostly in Markov chains; the case of a continuous state
space is the province of the diffusion approximation [3].

State transitions may occur at any time for a continuous-time

Markov chain. The Markov property dictates that the time for which a
state may remain unchanged is distributed exponentially. In the case of
a discrete-time Markov chain, transitions must be made at every unit
time; the Markov property then dictates that the time for which a state
may remain unchanged is distributed geometrically.

-." The BIRTH-DEATH PROCESS is a special case of a Markov chain where
transitions may only take place to the current state or neighbouring
states.

A SEMI-MARKOV PROCESS is a generalised Markov process in which the
times between state changes obey an arbitrary probability distribution
(discrete or continuous). A Markov process can still be defined at the
instants of transition and is known as an imbedded Markov process.

A RANDOM WALK is an example of a semi-Markov process in which we
consider the motion of a particle in a state space such that the next
position of the particle is equal to the sum of the previous position

loo and a random variable drawn independently from an arbitrary
distribution. This distribution does not depend on the state of the
process except perhaps at some boundary states; i.e. a random walk is a
sequence IS.; n - 1,2,...1 which satisfies

Nor .. .- X,, XS ..... X, (n a 1,2,....)

where S, - 0 and the Xi are independently drawn from the same

distribution. The label n counts the number of transitions made. The

12



time intervals between transitions are of no interest in a random walk; %
what is of interest is the position Safter n transitions.

A RENEWAL PROCESS is similar to a random walk, but in this case the
quantity of interest is the distribution of time between transitions.
Thus Sia now the time at which the nth transition takes place, ani XAis
the time between the (n-i)th and nth transitions.

3.4 Discrete-time Markov chains

3.4.1 Introduction

The Markov property for a Markov chain fx. is

P[X(t")-xoWtx(t.)-. ....... x(t,)=x,] - P[x(t.*j)-X"M1x(t'W)-

where the rhs is the (one step) transition probability. Given the
initial distribution P[X* -j] and the transition probabilities, we may
determine the probability of being in various states at time n.

The Markov chain is HOMOGENEOUS if the transition probabilities are
independent of time. We may then define the m-step transition
probability

p m P[X.A- j'x.m i] (n arbitrary and m-1,2,....

3.4.2 Homogeneous Markov chains

A Markov chain is IRREDUCIBLE if every state can be reached from
every other state. Define

f - P[first return to Ei occurs n steps after leaving Ei]

.. P[ever returning to E] z f - fi

State E; is RECURRENT if fin I and TRANSIENT if f<1. If it is only
possible to return to Eiafter an integral multiple of V steps, then E is
PERIODIC with period r ; if 1 1, then Ejis APERIODIC.

For recurrent states Ei, we define the mean recurrence time of Ejas

If j - = , E$ is RECURRENT NULL; if MN < a*, E- is RECURRENT NONNULL.

We now introduce two important theorems. Let 1T be the probability
of finding the system in state E; at the nth step, i.e.

(a,

Then:

Theorem I - The states of an irreducible Markov chain are either all
transient or all recurrent nonnull or all recurrent null.
If periodic, then all states have the same period ).

A probability distribution P is STATIONARY if

13



P1  1 P for alln.

Theorem 2 In an irreducible and aperiodic homogeneous Markov chain,
the limiting probabilities (equilibrium probabilities)

La.)

always exist and are independent of the initial distribution.
Moreover, either

(a) All states are transient or all states are recurrent null,
in which cases T - 0 for all J and no stationary distribution
exists, or

(b) all states are recurrent nonnull and then 1" >0 for all J, in
which case the set fil I is a stationary distribution and

In this case the 1T" are uniquely determined by

i-IT

A state E; is ERGODIC if it is aperiodic, recurrent and nonnull; i.e.
f- 1, Mi <d, 7 - 1. If all states of a Narkov chain are ergodic, then
the chain itself is ergodic. Thus a Markov chain is ergodic if any of the

:following apply:
*-.- (i) lia f11j - f1""I

(ii) the chain is finite, aperiodic and irreducible

(iii) the set of linear equations in theorem 2 has a nonnull solution
for which

Define the prbability vector IT z (-'1T,1, ,",.....]. Then we may write
the theorem 2 equations as

"IT - PrT P (31)

where P - [p(j] is the transition probability matrix. There is a linear
dependence in the set of simultaneous equations for f, so the probability
conservation condition in eq.(3.1) is needed to determine the complete
solution.

We now consider the TRANSIENT distribution 1 "- [1',r" .... 1.
We have Whv r - "IT*-O - 1""P" (n - 1,20.....) (3.2)

3.4.3 Inhomogeneous Markov chains

The results for a homogeneous chain may be generalised to the case
of an inhomogeneous chain, where the transition probabilities depend on
time. Define

piV (m,n) a P[x.-jx.Wi]

which is the probability that the system will be in state ?.at step
n, given that it was in state Fat step m. In going from step m to n,
the system must pass through some intermediate state EL at some '.

14



intermediate time q. Thus

.. pj- (m.n) P[X--J.Xt-kjXe-]

£P[X~tkX.~i] [.JX-Xk

by definition of conditional probability. Using the Markov
property, we obtain the CHAPMAN-KOLMOGOROV (CK) EQUATION

f (m,n) - 2i p (m,q) pj (q,n) (m 4 q 4 n) (3.3)

If we define the matrices P(n) z [p;(n,n+1)] and H(m,n) [pi" (m,n)], the CK equation becomes

H(m,n) - H(m,q)H(q,n)

The FORWARD CK equation is obtained by setting qwn-1:

H(m,n) = H(m,n-1 )P(n-1) (3.4)

The solution is I.

H(m,n) - P(m)P(m+1) ...... P(n-1) (3.5)

As an analogy to the homogeneous case, we have

nrT.'- - P(n) with solution -rr'= IT P(O)P(1) .... P(n).

3.5 Continuous-time Markov chains

The forward CK equation in this case is

)pi-s,t)/)t - qii (t)p;; (s,t) + (t)p; (st) (3.6)

where q , is the rate at which the system moves from state E; to El, given that
it's currently in Ej. We define

P(t) - [pz (t,t At)j

Q(t) - lim (P(t)-I)/ht (the transition rate matrix)

H(s,t) = [P;j (s,t)]

We may write the forward CK equation as 4H(s,t)/)t - H(st)Q(t), s,<t.
The CK equation for the equilibrium probabilities is

dlT(t)/dt - q; (t)lTr(t) + " q.- (t)1r(t) (3.7)

Eq(3.6) describes the probability of the system being in state Ej at time t,
given that it was in Ei at time a. Eq(3.7) merely gives the probability that
the system is in state E; at time t; information about the initial state is
contained in 1T(o).

For the homogeneous case, we have Q(t)-*Q, H(sst)-OH(t). The limiting
distribution is given by

IT Q -o 1 (38)

---- ---

* 15



3.6 Birth-death processes

3.6.1 The Chapman-Kolmogorov equations

Elementary queueing theory is built upon the theory of birth-death
processes, which is the special case of a Markov process in which only
the transitions E&-*Ej.and Ej+Ejare allowed. We shall now derive some
properties of a birth-death process in the language of queueing theory.
Consider a queueing system which increases or decreases its population
by means of arrivals and departures respectively. Define

A M- arrival rate when system contains k customers

-"4 service " " " .11
In terms of the transition rate matrix Q, we have

Since X ('t - 1, then by definition of Q we have qq (t) 0.

This implies that q A +

Finally, qj& a 0 for lj-k:>1 by definition of the birth-death process.

We assume that the queueing process is a homogeneous
continuous-time Narkov process on the discrete states 0,1,2,...., that
arrivals and departures are independent(i.e. the Markov property), and

P[exactly one arrival in (t,t+.t)lk in system] = kat * o(t)
(3.9)

P[exactly no arrivals in (t,t+At)lk in system] - I - hAt + o(At)
4.:

We obtain two more equations by substituting "departure" for
"arrival" and AAfor A&. Note that we have assumed that the probability
of multiple events is o(dt). Define

J(t) - probability that system contains k customers at time t

Applying eq(3.7) with 7rk(t) - 1(t), we have

dIR(t)/dt - - (A&.,A&)Pt(t) *?P*4(t) *,01j,4t) , k >, 13.0

dP(t)/dt - - P.(t) + ^ P,(t) k w 0

A simpler method of obtaining eq(3.10) is to consider the state-
transition-rate diagram (Fig. 1). The equation

(Effective probability flow rate into RA)

- (Flow rate intQ EA) - (Flow rate out of Ek)

immediately yields eq(3.1O). This in an example of GLOBAL BALANCE, about
which more will be said later.

16



3.6.2 Poisson arrivals

Consider a pure arrival system with 0 0. Then the solution
of eq(3.10) is Pk(t) (At)kexp(-At) / k' ,

i.e the Poisson distribution. The mean and variance of this distribution
are both equal to At, and G(z) - exp[ At(z-1)].

Let T be the random variable describing interarrival times. Then:

A(t) - 1 - P[ >t] - 1 - o(t) 1 - exp(-At) , t > 0

a(t) - d(t)/dt - Aexp(- Xt) , t >, o
This is the exponential distribution for interarrival times. We have

E[-] - I/ A E\) 2/A 1 ' /AI

3.6.3 Postscript

It is a sad fact that the solution of eq(3.10) for even the simplest
interesting queueing system (i.e. M/M/i, with A; - A , li -AL ) is far too
complicated to be useful [2]. The diffusion approximation is therefore
preferable for axamining dynamic behaviour, although some attempts have
been made to apply queueing theory to the transient behaviour of the M/M/1/Kqueue [9]. The power of queueing theory lies in its ability to describe
equilibrium distributions.

3.7 Queueing systems in equilibrium

Let We now obtain the general equilibrium distribution for a single queue.

Pk - li P1t(t) , li dPjt)/dt - 0

where P(t) is as defined in eq(3.O). Setting A. - p.; - 0 (i-1,2,...)
in order to avoid writing the k-O boundary equation separately, we obtain from
eq(3.1o)

p& p. A-,/ , k : 0

- - (3.11)
pC = [ 1 +. 7TA%/, 1..- (from conservation of probability)

We are considering equilibrium distributions and thus are interested only in
the ergodic case; this occurs if there is a k,>/ 0 such that Ai&< i for all

k >,ko.
We now consider some specific queueing systems. Define Ai A/,4 , N as

the average occupancy of the system, and T as the average system delay.
M and G represent the Markovian and general distributions respectively.

(a) The M/M/1 queueChoose AI-A, . For ergodicity, < 1. We have

(b) The N/N/m queue
Choose AIL ., , - kfi (O k4 m) or m,, (m k)



0 For ergodicity, /lmA < 1. We obtain Erlang's C formula for the
probability that an arriving customer must join a queue, i.e.

P[queueing] - p C(m, A/,)

(c) The M/M/1/K queue
We must "lose" any customers which arrive when the system contains K
customers. Choose A*- ) (k < K) or 0 (k >,K) and -/A.
We obtain -' [(0-p)/(-e")]1V 0 o k 4 K

(d) The M/G/1 queue
Although the analysis of a queue with general service-time distribution
requires techniques we have not yet covered, it is convenient here to
give the POLLACZEK-KHINCHIN FORMULA for the average occupancy of an M/C/1
queue: (6 -a

N - + ,'a(I +C&)2(1p

where C q " ,/.. . where 0b is the variance of the service time.

3.8 Residual life

The queueing systems M/C/m and C/M/m are more difficult to analyse.
Consider the M/C/1 system for example: as the departures do not now
constitute a "memoryless" process, the state description must include
the time since the most recent departure as well as the number of
customers in the system. We can consider the set of departure times as
defining an IMBEDDED Markov chain, where now the transition
probabilities are not merely of the birth-death type since many arrivals
may occur during a departure period. We must deal with the case of an
arriving customer finding a partially served customer in the service
facility. We thus introduce the important concept of RESIDUAL LIFE.
Consider an arbitrary interdeparture time PDF

F(x) - P[?. x ,X

where T& is the departure time of the kth customer. Then the pdf is given by
f(x) - dF(x)/dx. Take a randomly chosen instant, t (Fig. 2). The time Y
until the next departure is the residual life, with PDF x) - rf4x] and
pdf f x). Let the selected lifetime X have PDF Vx) and pdf jx). Then

(Probability that interval of length x is chosen)

'-. O (length of interval) x (relative occurrence of interval)

'O i.e. P[x<X~x+dx] - fCx)dx - x f(x) dx / ml

where I/mnormalises the probability and vk% a E[(2j-2)"].
Thus:

ax - If(z) /m (312

low it's obvious that P(Y9ylX-xl - y/x for O,<yx.

:. P[y<Yrydy, x<X~x-dx] a (dy/x) (xf(x)dx/v) - f(x)dydx/m

4Integrating wrt x:
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fY) - ((y)) me (3.13)

We may use Laplace transforms to obtain the moments of this distribution.
In particular:

E[Y] = ,n !erm, (3.14)

3.9 Networks of Markovian queues

39.19 Burke's output theorem

Our results so far apply to single queues. The question arises as

to what relevance queueing theory has to a NETWORK of queues, in which
the output of one queue becomes the input of another.

We consider an M/M/i queueing system with Poisson arrivals at rate
and an exponential server of rate,,& (Fig. 3). We wish to find the PDF

D(t) of the interdeparture time distribution which feeds the next node
in the network. Let A s), v s) and 1s) be the Laplace transforms of the
interarrival, interdeparture and service time pdf's respectively. When a
customer leaves the node, either a second customer is in the queue or
the queue is empty. In the first case, D(t) is equal to B(t), so

Djs) node nonempty Bs)

If the node is empty after the first customer departs, then

(total delay) - (time until 2nd customer arrives)
+ (service time for 2nd customer)

As the variables are independent and identically distributed, the
Laplace transform of the sum is equal to the product of the Laplace
transforms of the individual times (see sections 2.2 and 2.5);

(s)Inode empty -A's)As) [

For exponential pdf's, the probability of a departure leaving
behind an empty system is the same as the probability of an arrival

* finding an empty system, i.e. i-P , where p - A/,A. Thus:

(s) - (1-p)Dls)Inode empty + o D10)1node nonempty - A /(s+A)

D(t) - 1 - exp(-At) - A(t)

Thus the Poisson stream is in no way affected by its passage
through the node.

It can also be shown that the split and join of Poisson streams are
4 themselves Poisson. These are important results, as they imply that the

individual queues in a network of N/M/1 queues may be analysed -

, independently of one another. This decomposition is essential for a
tractable analytic model.

3.9.2 Open networks

Consider an arbitrary open network of queues with N nodes. The ith
node consists of a exponential servers each with parameter A, and
receives Poisson arrivals from outside the system at rate V. Customers



move from node i to node j with probability i or leave the system with
probability

Feedback (i.e. i. >O) is allowed.

The total arrival rate Al to node i is the sum of the PoissonL
external arrivals and the internal arrivals (which are not necessarily

- Poisson because of feedback), i.e.

A1  - (i - ,2,.... ,) (3.15)

or, in matrix form, = + A R, where Az [ , ..... , ]
Each node must satisfy A < m.a i. for ergodicity.

Jackson [10] showed that each node i behaves as if it were an M/M/1
system with a Poisson input rate Ai, even though the inputs are not
Poisson in general. Let kjbe the number of customers in node i. Then the
equilibrium probability distribution factors into the product of the
marginal distributions, i.e.

p(1,k,.... ,k) - 4 (k)y ....... () ,

where each marginal distribution is the solution to the M/M/m
system. This result is kiiown as JACKSON'S THEOREM.

3.9.3 Closed networks

A closed Markovian network contains a fixed number K of customers
and no external arrivals or departures are permitted. This constraint
introduces a dependency among the elements kiof the state vector, as
they must sum to K. By considerini the balancing of probability flows
(section 3.6), Gordon and Newell [11 proved that

p~~k .... [G(K)]-1T p'/# 4j(k) (3.16

where
(i) G(K) 7T a, y /

(ii) P; are defined by AE, =A , where the A; are the solutions to
A AR (to within a multiplicative constant).

(iii) fi(ki) - kJ! (. mi) or sq m, (ki >, a;)

(iv) A is the set of state vectors k for which,.. k, - K.

Consider the quantities Pi /M , end suppose that there exists a
largest ratio A/mA , say. Then it can be shown that an infinite number
of customers will form in node k, which is the "bottleneck" for the
network, as K-.w. In this limit, a product-form solution exists for the
marginal distribution

p(k,#,, ....... k) p, (%))pj k...... pjk
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3.10 Global and local balance

The most general model to date of a product-form queueing network

is that of Baskett et al [12]. They generalise the models of the

previous Section to include different types of server and multiple

customer classes. The four types of service centre can model central
processors, data channels, terminals and routing delays respectively.

To obtain the joint equilibrium distribution, we must solve the

forward CK equation with dP/dt-O, or, equivalently, solve the global
balance equation

I nn(E) [rte of flow from to E] - P(Ei) rrate of flow out of Ei] (3.17)

for all states Ei. With a complex state description such as that in
[121, the global balance equations become difficult to solve. We can

obtain sufficient conditions for global balance by decomposing the
global balance equations into a larger set of smaller LOCAL BALANCE
equations. For each state Ejand node k, we equate the rate of flow into
Ei by a customer entering node k to the rate of flow out of Ei by a
customer leaving node k. Thus each global balance equation is a sum of
local balance equations. The local balance method is used to determine
the joint equilibrium distribution in [12]: a discussion of local
balance is given in [13].
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4. APPLICATION TO COMMUNICATIONS NETWORKS

4.1 Introduction

4.1.1 Real networks

A communications network consists of a subnet (containing data
channels, packet buffers and nodal processors) and hosts which feed
packets into the subnet. Because of resource sharing, queues may build
up for the data channels. The progress of packets in the network may be
governed by a number of protocols.

Preallocation of resources (e.g. circuit switching) is a safe but
wasteful method of sending messages. Therefore in a store-and-forward
network, only a channel and a buffer at each end of the channel are
allocated for each packet. If the packet is successfully received at the
next node, an acknowledgement (ack) is sent to the previous node. If no
ack has been received at the end of a timeout period, the packet is
retransmitted.

The datagram and virtual circuit subnet services are now
introduced. The datagram traverses the network as an independent entity;
virtual circuit packets belong to a "virtual channel" connecting sources
and sinks and are usually characterised by the same routing behaviour.

The efficient utilisation of resources depends upon the routing
algorithm and flow and congestion control. Performance may be defined by
average throughput and transit delay.

.0 4.1.2 Assumptions

In order to apply the theory of product-form queueing networks
r14,15], certain assumptions and approximations must be made. Adaptive
routing, message priorities and loss of packets caused by full buffers
cannot be treated because of statistical dependence between the elements
of the state vector.

Most models of communication networks assume exponential arrivals
and departures. Additionally, Kleinrock's INDEPENDENCE ASSUMPTION []
must be invoked: every time a packet joins a queue, its length must be
redetermined from the exponential pdf associated with the service
facility. This assumption removes the statistical dependence of

- transmission times at the channels. It is not a realistic approximation,
but this cannot be helped.

If the average arrival rate of packets to a node is ,A, then the
traffic intensity is given byp - A/.C, where C is the line capacity of
the next channel andi/ is the reciprocal mean packet length.

4.1.3 Mean end-to-end delay in an open network [3]

Let T be the total average traffic rate offered to the network.
This is split up among the various channels such that A4 is the average

rate to channel i (which has capacity Ci). We may then define a traffic
intensity dis V-,A*Cjat each channel. Assume there are M channels in the
network. Then the mean number of packets in the network is equal to the
sum of the mean queue lengths n at each channel; if T is the mean
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end-to-end delay for an arbitrary packet, then by Little's law the mean
total number of packets is VT. Thus

M M %

.. T - ' " AV'(,A Ci-A;) (4.1)

We may optimise line capacities by minimising T vrt the Ci, subject
to some cost constraint. If the constraint is linear in the C;, then the
method of Lagrange multipliers may be used.

The full distribution for end-to-end delay along a path has also
been evaluated [16]. In particular, the variance of end-to-end delay
along the path is

""" " [ c;( - (4.2)
4 ii

4.1.4 Closed networks
,4.

.. Closed networks with product form may be used to model end-to-end
flow control in a virtual circuit and permit-oriented (isarithmic)
global congestion control. The evaluation of the PARTITION FUNCTION (or
normalisation constant) G(K) in eq(3.16) is a problem because of the
large computer time and storage required when there is a large number of
nodes. Another difficulty is that the A are determined only to within a
multiplicative constant, so that incorrect scaling may cause underflow
or overflow.

There are currently three approaches to the calculation of the
properties of a closed network: the convolution algorithm r17], the
mean-value-analysis (MVA) algorithm rlie], and the integral

representation and asymptotic expansion of the partition function [19].

MVA obtains mean quantities associated with a closed chain without
having to deal with the full product-form expression for the equilibrium
distribution. Consider a £losed cyclic chain of N exponential servers
with mean service times 'FL (n - 1,2,...,N) and a fixed number K of
circulating messages. Define

*k.(K) - mean size of queue n (including message in service)

- X(K) - mean delay at queue n

A(K) a throughput of chain

* The mean delay at queue n for a "tagged" message is the sum of the
service time 1. for the tagged message and the service times for the
average number of messages in the system when the tagged message
arrives. The ARRIVAL THEOREM states that in a closed exponential system
the state seen upon arrival instants has the same distribution as the
equilibrium distribution of the same closed system with K-1 messages.
Thus

KK -.I (n 1,2,...,N) (4.3)

With the obvious equation V(O) - 0, and the following expressions
(obtained by the application of Little's formula to all N servers and to

each individual server respectively), we have a simple recursive
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solution for the closed exponential system:

X(K) K / t(K) (4.4)

'' A(K)t(K) (4.5)

NVA can be extended to include more general topologies than the
cyclic chain [18].

4.1.5 Homogeneous network models

Networks with message priorities or nodal buffer limits contain
statistical dependencies which do not allow a product-form solution for
the equilibrium distribution. A homogeneous network approximation may be
employed, in which all nodes are identical and perform identical
functions. This implies that all nodes are topologically equivalent, all
channels are of the same capacity, and all external offered traffic
rates are equal. Such models have been used to investigate networks with
priorities L20 ] and nodal buffer management schemes [21,22].

4.1.6 The range of application of queueing theory

The model defined by eq(4.2) may be used to optimise non-adaptive
routing algorithms. The use of closed product-form networks for the
analysis of end-to-end flow control and isarithmic congestion control
has also been mentioned in this section.

We may investigate network components such as switches and
point-to-point links by applying directly local or global balance
conditions; the performance of buffer management schemes and
data-link-control (DLC) protocols may thus be evaluated.

"I.

U 4.2 Data-link-control protocols

'--

', -. 4.2.1 A simple model with window flow control

Butto et al [23] consider two nodes A, B, where B acknowledges
packets sent by A. The timeout is represented by a feedback to A of rate
e ; when the timeout expires, all packets in queue Q are erased from Q
and placed in Q for retransmission (Fig. 4). The number of packets in Q
may not exceed the window size, M.

We assume an exponential arrival pdf with parameter A ,and
exponential servers at nodes A and B with parameters Ox and

-respectively. The model is inspired by Ref 24.

The state transition diagrams are given in Fig. 5. The balance
equations may be solved by applying the z-transform

Qj(z) - £ P..z I (z < I, O04gs)
j.0o "

Once the probabilities PjV have been obtained, it is easy to
calculate the average packet delay by Little's law:

- 1

Average delay k'.' Z (i + J) PiCoe j-o

The graph of this quantity (Fig. 6) shows that the delay is



sensitive to a certain range of window widths.

4.2.2 Retransmissions and stability [23]

We now investigate the instability that sets in when
retransmissions waste the available resources. Assume an exponential
distribution for the service time T, and let the timeout duration be T
Then retransmission occurs if

Packet delay W > Toe T-WA,

where WA is the (constant) delay time for an ack. The average
-, traffic rate A offered to the channel is related to the original offered

traffic rate A* by A AoN, where N is the mean number of transmissions
for any one packet (Fig. 7). Now,

N - XiPj,

where Pi m Pfi copies sent (including original)1

" P[i-1 failures] P[one success]

Now, P[success] - P[W.] z FJTO) (i.e. the PDF for W)

Thus: A- klit1 --C)P'FjT.) A./F )

where A0 is the throughput in steady-state conditions.

Using the standard queueing theory expressions for FIT), an
implicit equation for mean packet delay W as a function of A.may be
obtained. The numerical solution yields the graph in Fig. 8, where the
instability is clearly seen.

4.2.3 The "send and wait" protocol

We now introduce a more general treatment by Fayolle et al [25] of

the send and wait protocol, which is a case of window flow control with
the window size set to unity.

Define the random variables X, Y and Z as the message transmission

duration (iid for all messages), the delay from the end of transmission
to receipt of an ack, and the waiting time for an ack if timeout T -00,
respectively. Let L be the probability that a message is not
acknowledged (due to message loss or erroneous transmission). We may
define the PDFs

G(x) z P[X~x] , B(x) i P[Y x] , A(x) z P[z,] B(x)(1-L) (x<-e)
or i (x-.a)

The total transmission time Tis typically made up as in Fig. 9. Define

D - Pf[ack not received before timeout] - 1-A(T) - 1 - B(T)(1-L)

If ts is a random variable representing the total effective
transmission delay (including all the "send" and "wait" intervals) for a
message, given that it has to be transmitted n times before the ack
precedes the timeout, then
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- E[X] + (n-1 )T + (l-Drfta(t)dt (4.6)

where a(t) is the pdf of X.

The terms in the rha of eq(4.6) represent respectively the average
total transmission duration, total timeout duration, and average time
before the ack arrives successfully on the nth attempt. Note the
renormalising of the pdf in the third term because of the restricted
interval (O,T).

The average effective total transmission duration is then given by

E[T] a EZQ P[n transmissions] - ErtD''(1-D) (4.7)

The timeout which minimises ErT] can now be obtained implicitly in
4.. terms of a(x) and ErX].

It is instructive to obtain the distribution of t by calculating
the Laplace transform f s) of the pdf f(x) of • We have

SnX + (n-1)T + Z (o Z< T) (4.8)

Let t[Q] denote the Laplace transform of the pdf of the random
variable Q. Then the convolution property for the sum of independent
variables (Section 2.2) yields

L [Z - £[nx]tr(n-i)T]j[z] (0 4 z < T)
.4..

Now, P[XxJ " P[X~x/n] - G(x/n)

t.. [nX] - exp(-sx)(nx/n~x/n) - exp(-sy)g(y)dy a sn)

The above refers to retransmissions of the same message, which are
obviously not independent. If the durations X were independent, we would
have .,[nX]-[1 ()]'

We also have

.[(n-1)T] - exp(-sx)j[x-(n-1)T]dx Iexp[-s(n-)T]
and

[Z - a(s)/(I-D) (0 j Z < T)

Finally,-. , £ r] - , D'(1-D)4ZJ,

- which may be differentiated to give the moments of the PDF of .

The above analysis is completely general and does not depend upon
the specific distributions G(x) and B(x). Fayolle et al then consider
the effect of the protocol on the buffer queue behaviour by assuming anV exponential arrival process for G(x) and using the imbedded Markov chain

approach for the number of messages in the buffer. Results are Piven
[25] for the optimal timeouts under these conditions.

Another approach to the analysis of the send and wait protocol is
described by Reiser [8]. Both ends of the link may transmit and receive
messages; in order to reduce the number of states to be considered,
saturated (nonempty) queues are assumed. The THROUGHPUT-LIMIT THEOREM
states that the maximum arrival rate leading to a stationary solution is
also the maximum achievable throughput; this implies that the maximum
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ythroughput may be determined without having to consider those states
containing an empty queue. Because of saturation, no acks may be sent
until both ends of the link are ready, and so the acks are synchronised.
The process is depicted in Fig. 10. TV represents the state in which a
message is being transmitted over channel 1 whilst channel 2 is waiting,
etc.

We assume that message transmission rates on channels 1 and 2 are

exponentially distributed with parametersA4,Asrespectively; ack rates
on both channels are exponentially distributed with parameterSA. The
state transition diagram is given in Fig. 10. The flows from state TT
deserve explanation. If 11, lzare exponentially distributed transmission
rates with parameters , respectively, then the variable min(,,) is
also exponentially distributed with parameterA,+A4s. Similarly,

'"[ it -,,a

Thus the flow from TT to TW, for example, is given by

(I ,As)P[,L1l,,] -A1,.A*

%. The balance equations for the state transitions are easily solved
46 to yield the maximum throughput in terms of &1 ,&4g and "A•
* (Alternatively, as the system can be thought of as a closed exponential

one with a single message, we may apply the mean value analysis of
Section 4.1 with K-I.)

4.2.4 The HDLC Protocol

Bux et al (27] apply a heuristical method to the analysis of the
HDLC protocol. The first two moments of the PDF of the effective
transmission time are evaluated approximately by making independence
assumptions and using the renewal formula (eq. 3.14). The mean transfer
time of messages, assuming an exponential arrival distribution at either
end of the link, is then given by the Pollaczek-Khinchin formula for the
M/G/1 queue (Section 3.7).

Labetoulle et al 28] consider the case of saturated queues only.

4.3 Nodal buffer management

4.3.1 Introduction

Some difficulties arise in the performance evaluation of buffer
management strategies because the equilibrium probability distribution
for a queueing network with finite storage is unknown at present. The
standard approach is to analyse the behaviour of a single node by means
of queueing theory and then assume flow conservation (perhaps in a
homogeneous network).

4.3.2 Restricted Buffer Sharing

Irland 31] analyses a policy in which R classes of traffic are
accepted by R output channel queues. Each class r has exponential
arrival and server rates with parameters kp,4.prespectively. If there is
a total of N buffers in the node, then the strategy is to limit the
number of buffers kp occupied by packets of class r to M(, <.

J



-- The easiest way to find the equilibrium probabilities is to
consider the local balance equations:

5'l5.'

. .... " - ArP(I ,.,k kj for r1,2,...,R

The solution is P(k) - C' p , (for feasible k only),

where C k-. ? i , and L,-

The normalisation constant C is difficult to evaluate because of
the restriction on the states; Irland achieves this by a convolution
approach. The nodal blocking probability P1k4-M] for class r packets can
then be found by numerical means; the optimal value Nlof K which
minimises this blocking probability turns out to be

' " Irland also finds the throughput vs. load behaviour for various
. other strategies such as "no sharing", with Y N/R, and "unrestricted

sharing", with MN. The worst congesion occurs for the unrestricted
* case, as expected. The behaviour of a network of nodes is not

considered.

4.3.3 A simple model with congestion [29)

Before describing other results in this field, it is useful to
consider the fundamental model on which they are based. A node with one
input and one output link has a finite number N of buffers; there are
exponential offered arrival and departure rates with parameters *\,,A
The actual throughput Jr is less than A because of the effects of
blocking at the next node. Let the blocking probability be B (Fig. 11).

Assume that the blocking probability is the same for the next node
in the network (i.e. a homogeneous network). The effective utilisationp'
is given by

- -B)

* From queueing theory, B (1- , 1 /(F-/ 04) (see Section 3.7)

Then the equation ( - (i-B) is an implicit one for ¥ (the

throughput) as a function of A (the offered traffic rate). The solution
yields the congestion curve of Fig. 12. It must be noted that flow
balancing arguments have been used to obtain a stationary blocking
probability, although the system is not stationary [8].

4.3.4 Lam's model of a store-and-forward node [30]

Lam's model is an enhancement of that given above. He constructs a
product- form queueing network model of a node, with different classesof traffic routed to several output links with Markovian transition

probabilities. Acks and timeouts are represented by random delays (i.e.
infinite-server "queues", which support product form). Packets destined

for node j are routed to the timeout box with probability Bjor to the
.1'. ack box with probability 1-Bj, Bjis thus the blocking probability at node

a. The acked packets are sent to the finite buffer pool.

The equilibrium distribution for the node is given by t- standard

i% _%



open network solution. We construct a network approximation by assuming
that the total flow into any service facility is equal to the flow out
of it. (N.B. this is not a homogeneous network assumption, as the

,V.. blocking probabilities here are not assumed to be the same for each
node.) Define the row vectors f , Zas the throughput and external
offered traffic rate respectively, and let P be the node-node routing
probability matrix. Then by flow conservation

, , S. + , i.e. I. ;(I_ F

The actual arrival rate A (including retransmissions) is given by
an argument similar to that in Section 4.2:

I p~i /(I -

Substituting this in the equation B,- P[all buffers are filled], we
obtain a set of nonlinear simultaneous equations which can be solved
numerically (by the Newton-Raphson method, for example). The equations
are of the form

B; -

The dependence of Bi on the blocking probabilities Bi(jii) is
brought about by the dependence of the normalising constant on the Bi.

4.3.5 Input buffer limiting

Lam and Reiser r21] embed Lam's model of a node in a homogeneous
'V network in order to study the performance of an input buffer limiting

mechanism. We shall ignore the nodal processing and acks with timeout
and consider only one outgoing link queue in order to concentrate upon
the essential characteristics of the buffer limiting method.

Two types of traffic enter the node: input traffic from a local
8- host and transit traffic (i.e. that whic has already passed through one

or more nodes) from the rest of the network. The traffic is considered
to be exponential with parameters kand 4for the input and transit
traffic respectively (Fig. 13). Because of blocking caused by the finite
storage, the average throughput is given by T and 4for input and
transit traffic, where

k(Ij )(-~ Br 7T- X1 -Br)
Br and BSare the blocking probabilities for the traffic types. In a

homogeneous network, these blocking probabilities are the same for all
nodes; moreover

where T is the average number of hops traversed by packets in the
network. This equation merely states that transit traffic in generated
by input traffic at other nodes.

In order to alleviate congestion, we do not allow input packets to
use more than Nz <N buffers, whereas transit packets may use all N
buffers. B: and Br may be found by an iterative method; using these
values, a numerical approach reveals the following rule of thumb for the
value of the ratio NIN which maximises throughput:

NZ/N 4 ;/(.+) ( 1 i/(14T) for a homogeneous network)
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Kamoun [22] has considered a slightly different buffer limiting
mechanism in which no input traffic is accepted if the total number of
filled buffers is equal to Nz (whether filled by input or transit
traffic). The choice of a torus network allows him to evaluate W
explicitly. The optimal value of NX in the torus network is then

calculated by numerical means.

4.4 End-to-end protocols

4.4.1 Introduction

In order to evaluate the performance of an end-to-end flow control
scheme or to calculate parameters such as the average end-to-end delay,
a useful approximation is to consider the tandem link (i.e. the set of
nodes and channels defining a virtual circuit) in isolation from the
rest of the network. The applications of open tandem links to the
calculation of the first two moments of the end-to-end delay
distribution and of closed multichain networks to the evaluation of
window flow control are reviewed comprehensively by Lam and Wong

*r14,151.

4.4.2 End-to-end flow control in a tandem link

The most important model is that of Pennotti and Schwartz ['21.
They consider a tandem link embedded in a network. The traffic passing
through the nodes defined by the link may be classified as link traffic
and external traffic. In order to obtain a tractable model, we must
assume that the external arrivals occur independently of the movement of

the link traffic and occur independently at each node along the link.
-. . These assumptions decouple the tandem link from the rest of the network,

apart from the effect of the external traffic on the occupancy of each
node in the link. The tandem link is shown in Fig. 14, together with the
link traffic (average rate A ) and the external arrivals to nodes
1,2, .... ,M (average rateA 1 , iul,2,...,M).

A useful measure of congestion is the link-loading factor, L, which
. relates the performance of each node without link traffic to the

*performance when link traffic exists. Define

T4 mean queueing time for external packets at node i in the

presence of link traffic

T = mean queueing time for external packets at node i when
"l there is no link traffic

Then L is defined by .

L - ( ) , I(T- T.)/T,;]

- ( )" 4' /ij1 by Little's law

where Zis the average number of external packets in node i in the presence of
link traffic, etc. Standard queueing theory yields

i- '/ (i-;) , as there is no link traffic in this case.

, . .5
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L measures the link congestion as the external packets see it, but
as they are themselva link packets (on other links), L is a reasonable

measure of congestion.

The application of end-to-end control affects L by changing the in,.

Let the window size be N; then the open tandem link of Fig. 14 is
replaced by a closed chain with N cycling link packets. An extra "node"
with serving rate Xis introduced as shown in Fig. 15. The effect of the
flow cpntrol on external links (and thus on the external average arrival
rates A; ) is ignored •

Pennotti and Schwartz solve this system by constructing the global
balance equation. It is instructive to see how this is done. The state
vector is of dimension 2M and consists of the numbers of link and
external packets at each node i, denoted by niand airespectively. The
number of link packets at the new artificial node depends on the numbers
n;~ (iw1,2,...,M) because the link system is limited to N link packets,
and so must not be included in the state vector.

The alobal balance equation [i.e. flow out of state (n,_) = flow A
into (n,n)J is given by

(A*.. A;4#0 P(nm) (link arrival at 1, external arrival at i,
W external departure at i, link departure at M)

= A.P(n,-I) (link arrival at 1)

+ P(n.-I) (external arrival at i)
Sol

+ Y-[(ni+l)/(ni lmi)*;P(n&+l,n,,-1) (link movement from i to i 1)

+ [(n.+1)/(n+1+mn,)a.P(n ,*1) (link departure from 14)

4 [n(external departure from )

The state (mi-1) is shorthand for (m,...,-,..., ;,n...,n,),
etc. The probability of infeasible states is taken to be zero; this
takes care of the boundary equations. Note that a careful definition of
.the service rate on the rhs of the balance equation is required: if we
take the fourth term on the rhs, for example, the effective service rate
for the link packets at node N is the original service rateMmultiplied
by the ratio of the number of link packets to the total number of
packets at node M. This partition is not necessary on the lho of the
balance equation, as we do not care whether a link or an external
departure changes the state from (Da).

The solution of the balance equation is given by the BCP
expression for a closed product-form network [121 (although Pennotti and
Schwartz give an explicit calculation). The blocking probability B for
the tandem link is of course given by

B -Pfl nt- W
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The results show that the effect of the external traffic on the
link traffic is equivalent to reducing each service rate by the
corresponding external arrival rate, i.e.,Adi 44- - . These adjusted 4

average service rates are strictly correct only for (open or closed)
product-form queueing networks; nevertheless it is tempting to apply
them to models for which they are not really valid r8].

Another result of the model is

which may be substituted into the expression for the link-loading
factor, L.

The case of local congestion control may be treated in an
approximate way (no exact solutions exist for a network with blocking).
The control imposes a limit of Ni link packets at each node i. The
external traffic is accounted for by adjusting the service rates
(although this is strictly valid only for the case of end-to-end
control). The link is then treated as a series of independent M/F/1
queues, with the blocking probability of each server being
(independently) equal to the probability that the succeeding queue is
full. The Mth stage is never blocked and so the blocking probabilities

* for stages M-1,M-2,...,1 may be found in an iterative way. The
throughput A is given by

-A lP[first stage is full]

Ais required for the calculation of the blocking probabilities.

Pennotti and Schwartz derive some numerical results for a 3-stage
tandem link with all service rates equal toA. They obtain graphs for L
vs. p - ok.4A which show that both types of control become important in
reducing the congestion L for large values of A. Optimal control

>:- parameters (such as the window size, N) may then be selected.

Chatterjee et al [331 have extended the above model to include
random routing.

4.4.3 Closed multichain networks

. tThe Pennotti and Schwartz model of window flow control employs the

approximation that the network (excluding the tandem link itself) is
, open. Reiser [35] considers a more realistic model where the network

consists of a set of interconnecting closed chains with different window
""" sizes. The BCMP solution for a closed network applies, but as usual the

normalising constant is difficult to calculate for a large network.
* Reiser instead uses mean-value analysis, as the arrival theorem applies:

an arriving packet in a closed multichain queueinR network will observe
the equilibrium solution of the network with one less packet in the
arriving packet's chain.

Pujolle and Spaniol [36] make use of a simplified version of the
Reiser model to assess the relative performance of datagrams, virtual
circuits and a hybrid implementation in a communications subnet. A
geometrical distribution is assumed for the number of packets in a
message. A virtual circuit with window size N is approximated by N
elementary virtual circuits of unit window size, so the onalysis is
simplified.

eu
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4.4.4 Optimum window size

The preceding models require numerical analysis for their solution.
Kumar [34] considers a simple isolated open tandem link model in order
to obtain the optimum window size in an analytical way. The link
consists of M nodes with service rates, (i-1,2,...,N). Kumar takes the
GENERALISED POWER P(A ) as his objective function, where

P(A) A /D(A)

A is the average throughput, D(A) is the average link delay, andI
is an adjustable parameter. This definition of power recognises the
trade-off between throughput and delay that is characteristic of
queueing systems; the parameter 1 allows us to decide the relative
importance of the two quantities.

As the link is of product form, the average delays ij A) at each

node are independent. Thus the total average delay is given by

D(A) - I D(A) -

The optimal throughput A* which maximises the power is then
calculated by standard methods.

By Little's law, the average number N of messages in the chain is

N. - £A D(A)

It may easily be shown that the optimal number N of messages is
given by N - Mi for the case where all service rates are equal. Kumar
claims that N* is a reasonable estimate of the optimal window size for
the link.

The propagation delay caused by the presence of a satellite link
can also be taken into account; as expected, it has a considerable
effect on the optimal window size.

4.4.5 Two-level control

Finally, the application of queueing theory to the analysis of a
network containing two levels of control [15,371 is worth mentioning. We
consider an open product-form network in which packets are classified
according to their source and destination. The first level of control is
ISARITHMIC (i.e. the total number of packets in the network is kept
below a certain value). The second level of control is of the end-to-end
type; i.e. the number of packets in each class is restricted.

The problem is thus that of an open product-form network with
population size constraints. The calculation of the partition function
is tedious because the population constraints limit the number of
feasible states. The convolution method obtains numerical results for
average throughput and end-to-end delay. The isarithmic control is shown
to allow serious degradation in throughput for other classes of packet
when the load is increased for any particular class. The additional
inclusion of end-to-end control results in a much superior overall
network performance.
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Fig. 4 Window flow control (Section 4.2.1)

Fig. 5 State transitions for window flow control model (Section 4.2.1)
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Fig. 9 Typical transmission time for send and wait protocol (Section 4.2.3)
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Fig. 11 Simple finite buffer model (Section 4.3.3)
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Fig. 14 An open tandem link (Section 4.4.2)
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Fig. 15 A closed tandem link (Section 4.4.2)
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05. NETWORKS WITHOUT PRODUCT FORM

5.1 Introduction

The tractability of BCMP type queueing networks [12] lies in the
fact that their joint equilibrium probability distributions are of
product form, so that each queue may be treated independently of the
rest of the network (apart from the effect on the average arrival rate
caused by conservation of flow). This independence is essentially
brought about by the adoption of exponential arrival and departure
processes (although Ref. [12] extends this to certain other types of
departure process) which are considered to be independent of each other
(i.e. Kleinrock's Independence Assumption). The memoryless property of
the exponential distribution implies that we do not need to include (in
the state vector) the time elapsed since the last arrival or departure,
and thus the departures from one queue are independent of the arrivals
feeding into the next queue. (This is not a very realistic assumption to
make for a communications network, but the analysis would otherwise be
too difficult.)

The above discussion leads us to believe that the presence of
adaptive routing, nodal blocking and message priorities will destroy the
product form, as they all introduce strong state dependencies between
the queues. In addition, any form of congestion control in a real
network will result in the buffering of blocked packets outside the
network until later. As this destroys the Markov property, this
situation cannot be handled analytically either. The equilibrium
distributions of networks possessing any of these characteristics cannot
(as yet) be obtained in closed analytical form.

This chapter describes attempts to analyse exactly networks with
blocking and message priorities.

5.2 Blocking in networks

5.2.1 Introduction

Chapter 4 contained various models in which the concept of blocking

was treated in an approximate way. We concentrate in this section upon
exact analysis of simpler systems.

5.2.2 A simple cyclic queueing system

Gordon and Newell [381 consider a closed tandem link with M
exponential servers of average rate,4k and a finite maximum queue length
of size m,(i-1,2,...,M). The closed system contains N cycling customers.
If the number nM of customers at the (i+.)th stage is such that n# -
mui, then the ith server's operation is suspended until a customer at
stage i+1 has completed service.

The global balance equation for the system is
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'n..

where (ni) * .70 ;o* ; (n -
it; OI

and !n, - N.
* [3a

The case M-2 is exactly solvable. The equilibrium probability
distribution may be denoted by P(nj ) (as njis not an independent
variable). The minimum and maximum values of n are given by

k, W max(ON-m.) , ks - min(N,m,)

Thus the number of possible states is R 1+k,-k,. The global balance equations
are

(^+,,Aj)P,(n) ^ AP,(n+1) /,P(n-1) for k, I ( n < k,

PiF(kg+1) -AP,(4 for n k, + I

The solution is

Ptn) = (I)*'" P(k) ,
where

For the case N > mvi, andA. A2, we see that the first stage must
always contain at least k,(>O) customers, so the mean throughput A is

A -At ,uPrni MAj. -A' [' - lPk)]C.a
Cordon and Newell also present an approximate solution for the

general case with an arbitrary number of servers.

5.2.3 A two-stage network with feedback and blocking

Konheim and Reiser [24] have formulated a model which reflects the
characteristics of a concentrator-processor combination. Packets queue
at the concentrator and are then sent to the main processor, which has a
small buffer (Fig. 16). When this buffer is full, the concentrator stops
polling the input lines.

Let i,j be the number of packets queued at the concentrator ani
processor respectively (Fig. 16). The buffer in the processor can
accommodate a maximum of M packets; when it is full, the concentrator is
blocked. The feedback is represented by an independent probability 0
that the packet is returned to the concentrator queue.

The state transition-rate diagram is given in Fig. 17. To solve the
global balance equation we introduce the s-transform

W(z) - £Pei. z' o O<J,<j I and I'z ' .

This transforms the linear system of balance equations into an
equivalent linear system in tridiagonal form which relates the functions
fl(0). Unfortunately this simple system still requires a numerical a,

solution. An analytical solution in closed form is available only for
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the case Mii.

5.3 Priority in networks

5.3-. Introduction

Networks with message priorities, like those with blocking, do not
satisfy the local balance requirements and thus do not have product-form
solutions. Kleinrock [3] describes the calculation of the average
waiting time at a single Y/M/1 queue with priorities. As with blocking,
the only exact solution for a priority network is for a two-node
network.

5.3.2 Priority in homogeneous networks f201

We consider an open network consisting of N nodes with exponential
service rates 44j (j=1,2,...,N) and P preemptive priority classes.
Exogeneous Poisson streams of priority class i arrive at node j with
mean rate A(i=n,...,P; Ji,...,N). Class i is of higher priority than
class k if i>k. The routing is governed by a probability matrix which is
the same for all priority classes.

Letthe solutions of the traffic equations (section 4.3.4) be lejfI,
where e' is the mean arrival rate of class i packets to node j. For
stability we must have

2e <z
I-!

The state is defined by Ini-, where nj is the number of class i
packets at node j. We define the aggregate state variable mibyF-

m; =_ n! number of packets of class i or higher at node j

Now,
NoE[nl - Erm;% Erm.]"

The mean delay (including service time) DIJ is given by Little's law:

D - ErniI/e - IEm m; / ej

In a homogeneous network, the service rate and the routing are
assumed to be the same for all priority classes. Thus the Im)i are the
same as would be obtained in a network where 0j = O (l4k~i) and all
remainihg priority distinctions ignored. This network is of product form
and so we may use the familiar M/M/1 formula T= A/(,* - ) for each
queue:

E[mk] * ej / (,eij -%
&t &

Defining p e /p , we then have

Du' 0 '

This expression is applicable only if routing and service time
distribution are the same for all priority classes.
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5.3.3 An exact two-node inhomogeneous solution [20]

The model is of a full-duplex data link which transmits two grades
of messages (i.e. high and low priority) under a window flow control
protocol. High- priority messages (and their acks) have preemptive
priority over their low- priority counterparts. The system is shown in
Fig. 18.

Under exponential assumptions the state transition-rate diagram for

the system is given by Fig. 19 (for the case N-3, Mr2). The rate diagram
depicts the following information. For O<n<N, changes in m cannot occur.
If n-O, then m may decrease at node A; it cannot increase because no
low-priority message can be transmitted from node B. The converse
argument applies for n-N. Morris F201 solves the balance equations for

-.~this system. The mean delay for each class of message may then be found
from the p(n,m) and Little's law.
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6. CONCLUSIONS

4-..

Most of the effort in the analytical performance evaluation of
communications networks has been restricted to the solution of the
equilibrium system by means of queueing theory or (more fundamentally)
the theory of Markov processes. This theory provides good results for
models of data links and other small systems, but is less accurate for
large networks because of the approximations necessary to preserve
product form. One approximation technique which leads to the analysis of
networks with general arrival and service distributions is decompositionO] [39]. The diffusion approximation f ] is a useful tool for the analysis

of transient behaviour. As it is most unlikely for a communications

network to attain equilibrium, transient behaviour is extremely
important. Queueing theory is not a suitable framework for this sort of
analysis, as the time-dependent solution of even the simple M/!/1 queue
is so complex as to be useless [3].

Some attempts f40] have been made to analyse optimal control and
adaptive routing in communications networks. As in queueing theory,
various unrealistic simplifications have to be made before the model is
tractable.

In summary, queueing theory has so far been the most important
method for the analysis of network behaviour. The next steps will
probably be in the following fields:

(i) Approximate analytical methods (such as decomposition) for the performance
evaluation of more realistic models.

(ii) The almost unexplored area of transient behaviour.

The need for such methods has never been more pressing.

W% J
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